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Phase transition has been found in many complex interactivity systems. Complex networks are not exception
either but there are quite few real systems where we can directly understand the emergence of this nontrivial
behavior from the microscopic view. In this paper, we present the emergence of the phase transition between
the congested and uncongested phases of a network link. We demonstrate a method to infer the background
traffic arrival process, which is one of the key state parameters of the Internet traffic. The traffic arrival process
in the Internet has been investigated in several studies, since the recognition of its self-similar nature. The
statistical properties of the traffic arrival process are very important since they are fundamental in modeling the
dynamical behavior. Here, we demonstrate how the widely used packet train technique can be used to deter-
mine the main properties of the traffic arrival process. We show that the packet train dispersion is sensitive to
the congestion on the network path. We introduce the packet train stretch as an order parameter to describe the
phase transition between the congested and uncongested phases of the bottleneck link in the path. We find that
the distribution of the background traffic arrival process can be determined from the average packet train
dispersion at the critical point of the system.
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I. INTRODUCTION

The Internet is in the focus of increased interest in the last
decade and the Internet traffic is growing at an extraordinary
pace. Several studies appeared concentrating on the large
scale properties of the Internet topology and the character-
ization of network traffic in the Internet research. The topol-
ogy and traffic dynamics are the key examples of complex
network research, which is the most dynamic field of modern
statistical physics. Complex network models are often rooted
from some theoretical consideration and often hard to di-
rectly map to real life networks. That is why it is so impor-
tant to show up examples where the model keeps the at-
tributes and structure of the real network and in the
meantime, the emergent complex behaviors such as phase
transition can be observed and understood from the micro-
structure of the systems.

Large scale properties of the Internet topology are studied
�1,2�, routing strategies are investigated �3� and also their
relation of traffic congestion phases are identified �4�. Sev-
eral papers concentrate on the properties of network traffic
�5–9�, while many authors detected fractal properties in traf-
fic time series �10–12�. Fractal traffic properties and self-
similar time series are usually attributed to heavy-tailed dis-
tributions of objects at the traffic sources, e.g., sizes of
transferred files �13,14� or time delays in user interactions
�15�. Recently, the dynamical origins �16–22� of self-
similarity also attract increasing attention. Despite the large
number of publications that are investigating the fractal
properties of network traffic, wide area experimental values
for the statistical properties of the background traffic are not
available to verify the models. The reason of lacking real

wide area experimental values is that the observation of
packet flows is based on packet trace collection at a given
router �23� and these network routers are usually not acces-
sible due to company policies. Only a limited number of real
traffic traces collected at certain points of the network
�24–26� are available publicly. A number of approaches try
to cope with measuring and inferring network traffic param-
eters in other way �29,30�. These methods do not collect
traces of a certain router, but uses a sender and a receiver
node at the two end points of the path and investigates the
properties of the network path between them. The sender
injects artificial traffic flows or network packets into the net-
work and observes their delay and other parameters at the
receiver. Usually the packet delays are used to infer the net-
work and traffic parameters. One of the main advantage of
these methods is that they do not require the cooperative
behavior of the network administrators, Internet service pro-
viders, since the probing is based on injecting standard Inter-
net packets toward the receiver.

Recently, important results appeared �27,28� that are in-
vestigating the scaling of flow fluctuations. These results
cope with the arrival process of the traffic flows. They found
a power law relationship between the fluctuations and the
average of the flux �bandwidth� of the traffic. The authors of
�27� also studied real Internet traffic traces to determine the
scaling of fluctuations. In this paper, we present a similar
approach that aims to infer the background traffic arrival
process. This is done by the analysis of packet train experi-
ments. We present the power law relation between the probe
train length and the value of the average stretch that is used
to determine the fluctuations of the background traffic flow.

The rest of our paper is organized as follows. In Sec. II
we give a brief introduction to the used network model and
the packet train measurement method. We describe the fluid
model and also the observable packet train dispersion curve
and their main properties in Sec. III. We introduce the stretch
parameter as an order parameter to describe the phase tran-
sition between the congested and uncongested phases in Sec.
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IV. In Sec. V, we demonstrate how the average stretch of the
packet train converges to the fluid limit and can used for
determining the arrival process of the background traffic in
the critical point. We show that the convergence of the power
law behavior is the key in our inferring method. In Sect. VI,
we explain the behavior of the average stretch function in the
purely congested and purely uncongested phases in detail.

II. NETWORK AND MEASUREMENT MODEL

Although the details of the methodology seems to be
somewhat technical there are few key issues we have to un-
derstand to be able to set up a faithful model, we summarize
the general framework in this section.

Active probing is a class of measuring methods that are
used to infer various characteristics of network paths �29,31�.
The common in these methods is that they involve probe
packets that are injected into the network, while a receiver
side analyzes the observed responses. This general frame-
work admits the determination of the topology of a network
�32,33�, the link bandwidths on a path �34–36�, and the sta-
tistics of packet size, packet loss and delay along a route
�37,38�. These properties are important for quality of service
considerations, because together they determine the rate at
which applications can send data on the route.

We model the network as single hop network. In this case
the network packets arrive into a single waiting queue and
they are processed by a single server. We assume first-in-
first-out �FIFO� queuing policy, so the arriving packets have
to wait until all the preceding packets are processed before.
This waiting is denoted by Dq and called queuing delay.
After the queuing the packet arrives to the processing server.
During the processing the processing delay Dpr= p /C
elapses, where p denotes the size of the packet in bits and C
denotes the processing capacity of the server counted in
Mbits/s. The C capacity is often called as the physical band-
width of the network. The concurrent traffic flows �either real
data transportation or measurement flows� entering to the
same network hop has to share the waiting queue and the
processing capacity with all the other traffic flows. From
measurement point of view we distinguish the probe traffic
�containing our measurement packets� and the background
traffic �containing all the other traffic� their rates are mea-
sured in Mbits/s. The background traffic can be assumed as
constant sized packets �without restricting the model �34��
and their arrival process will be in the focus of our investi-
gation. In general, network models cannot be developed
without certain assumptions on the background traffic arrival
model. Our work aims to present an estimation method to
determine the distribution of the background traffic arrival
process with probing methods.

In general, a probe traffic may contain n probe packets of
different sizes pi, i� �1. . .n� sent with different interdepar-
ture times �input spacing� �i= ti+1

d − ti
d, i� �1. . .n−1�. The ac-

tual choice of pi and �i determines the architecture of the
probe stream that may vary according to the particular quan-
tity under investigation �e.g., bandwidth, distribution, or
spectrum of end-to-end delays�. Traversing the network the
probe packets interact with the background traffic as can be

seen in the subfigures of Fig. 5. The initial spacing �e.g., the
interdeparture time� of probe packets change due to the in-
teractions with the background traffic flows �see Figs.
5�b�–5�d��. They can also suffer extra queuing delays, since
the background traffic together with the probe traffic can be
more than the physical capacity of the link �Fig. 5�d��. The
analysis usually based on the arrived packets spacing �output
spacing� �i�= ti+1

a − ti
a, i� �1. . .n−1�. In most of the applica-

tions it is customary to send constant sized packets regularly
�pi= p and �i=��, this probe pattern is called packet train.
Other probe patterns are also common in the networking
practice. For instance to measure bottleneck bandwidth one
can send packet-pairs with an interpair time chosen ran-
domly from an exponential distribution, while the packets in
a pair are sent in a back-to-back fashion �36�. Another ex-
ample is the packet tailgating technique of �37�, where pairs
consisting of a packet with the highest possible size imme-
diately followed by a packet with the smallest possible size
are sent to measure the bandwidth of each link on a path. In
this paper, we use only packet trains �e.g., regularly sent
uniform sized packets�, that can be used for measure the
packet train dispersion.

III. PACKET DISPERSION IN CASE OF FLUID TRAFFIC

In our study we use packet trains to explore the dispersion
curve. We inject packet trains of constant sized packets with
the same input spacing between them �see Fig. 5�a�� and we
interested in the average output spacing of the packets as a
function of the input spacing. The input spacing between the
packets of the probe train is same for all the probe packets
and denoted by �. Thus the average input spacing is �n=�.
The �n� output spacing �see Figs. 5�b�–5�d�� of the probe train
that consist n packets are written

�n� =
1

n − 1�
i=1

n−1

�i�. �1�

The general formula for the packet train dispersion
function is

�n� = f��n� . �2�

The exact form of f� � depends of the details of the applied
background traffic model �34�. In our study, it is enough to
model the f��� dispersion curve in the fluid approximation of
the background traffic. In this approximation, the back-
ground traffic is considered as a fluid of infinitely small
packets. In this case, the average bandwidth of the back-
ground traffic is kept constant, while the average packet size
of the background traffic goes to zero �39�.

Let us consider a single-hop network with C physical ca-
pacity, B background traffic rate. Using the notation intro-
duced in Sec. II the � input and ��=�2� output spacing for a
packet train containing n=2 probe packets can be written:

� = t2
d − t1

d = �t0 + �� − �t0� , �3�
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�� = t2
a − t1

a = �t0 + � + D + Dq +
p

C
	 − �t0 + D +

p

C
	 , �4�

where t0 denotes the staring time of the experiment, D is the
link delay, Dq is queuing delay and p /C is a processing delay
of the probe packet.

In the case of the probe traffic rate is smaller than the free
capacity of the server �p /��C−B� the queuing delay will be
Dq=0, thus the separation of the two probe packets remain as
it was at the time of starting:

�� = � . �5�

In the case of the probe traffic rate exceeds the free ca-
pacity of the server �C−B� p /�� the second probe packet
suffers extra delay while the accumulated background traffic
is processed, that is the Dq queuing delay cannot be ne-
glected: ��=�+Dq. The background traffic starts accumulat-
ing right after the arrival of the first probe packet and go on
till the second probe packet arrives at the waiting queue. The
queue length can be formulated as the difference of the
amounts of the incoming �p+B�� and outgoing �C�� traffic.
With a division of C processing rate we can get the queuing
delay Dq= �p+B�−C�� /C. With an algebraic transformation
we get:

�� =
p

C
+

B

C
� �6�

for the �� output spacing as a function of the B background
traffic rate, the C capacity, the p probe packet size and the �
input spacing.

The two cases can be written together and called as the
fluid model of the packet dispersion:

�� = 
 p

C
+

B

C
� � � �c

� � � �c,
� �7�

where �c= p / �C−B�, which separates the congested and un-
congested phases of the network. This model of dispersion is
able to capture the transition between two important phases
of network operation and can be extended easily for probe
trains consisting n�2 number of packets. For general probe
trains containing n packets the form of the dispersion curve
is same as Eq. �7� with substituting �=�n and ��=�n� average
values.

The dispersion curves observed in packet level simula-
tions or in real world experiments deviate from the result of
the fluid model. The source of the deviation is that the as-
sumption of infinitely small packets is not hold in real world
experiments. The fluid model describes correctly the disper-
sion curve for asymptotically small and large � input spac-
ings, but it cannot handle the transitional region between the
congested and uncongested phases. Besides its weakness in
real world applications the fluid model gives us the lower
bound of the real dispersion curves �39�, which are very
useful in our investigation.

Here, we just note that based on diffusive approximation a
granular model of the dispersion curve for n=2 can be de-
rived in closed form �34�, even for the general case, where

the background traffic packet sizes are finite values. The
granular model describes the observed packet-pair dispersion
curves correctly even in their transitional region, but the
closed form result is only available for n=2 packet-pair sce-
narios. In our work, we focus on the deviation of the ob-
served dispersion curve and the dispersion curve based on
the fluid model as a function of the probe train length n and,
thus, the granular model cannot be applied here.

IV. PHASE TRANSITION

In our study, we investigate the convergence of the devia-
tion of the observed dispersion curve from the fluid limit as
a function of the packet train length we use the fluid-model
equations. Next, we show results of packet level simulations.
Since the simulation considers both the probe and back-
ground traffic packet sizes, the observable dispersion corre-
sponds to the real wide area experiments and not agrees with
the fluid model. In Fig. 1, the dispersion curves ��n�
= �f��n� for different train lengths are shown. Each data
point represents an average for 600 packet train measurement
events. The physical bandwidth C=10 Mbps, the average
background traffic rate B=6 Mbps, background traffic
packet size P=12000 bit, and the size of the probe packets
p=12000 bit are the same for both sets of parameters. We
plot the average output spacing �� as a function of the input
spacing �. The different symbols represent the results of the
packet level simulation with train length from n=10 to 1000.
In these simulations, we used a Poisson arrival process for
the background traffic. As a limiting case and a lower bound,
we also show the curve in fluid approximation. The deviation
of the observed curves from the fluid limit can be clearly
seen, while this deviation decreasing with the increasing
train length. The characteristic breakpoint is at the values of
p / �C−B�=3 ms. Now, we introduce a new parameter called
relative stretch to describe the average change of the probe
packet spacing of the train traversing the network for a given
probe train length n:

� =
�n� − �n

�n�
. �8�

This quantity serves as an order parameter that describes the
phase transition between the congested and uncongested
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FIG. 1. �Color online� The average output spacing curves for
different train lengths.
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phases �40�. In Fig. 2, the order parameter � can be seen as
a function of the probing rate �probe traffic intensity� p /�n. It
can be clearly seen that below the critical point �p /�c
=4 Mbps, which corresponds to �c=3 ms as above� the ob-
served � order parameter is zero for the fluid limit and above
the critical point the order parameter is increasing up to 1.
The order parameter for the packet train measurements
shows finite size scaling phenomena, as the train length
grows the deviation from the fluid limit disappears. In the
next section, we investigate this convergence at the critical
point.

V. DETECTING THE ARRIVAL PROCESS
IN THE CRITICAL POINT

In this section, we introduce the average stretch � to in-
vestigate the deviation of the average output spacing from
the fluid limit as a function of the train length n in the critical
point. This scenario is presented in Fig. 5�c� when the probe
traffic rate and the background traffic rate together just fill
the server capacity, but not overload it. We expect that the
properties of the convergence of the �n� to the � fl� are related
to the background traffic arrival process, since its character-
istics determine the deviation in n=2 packet-pair scenarios
�39�.

The average stretch can be written:

��n� = ��n� − � fl� , �9�

where �n� is the average output spacing for the n length
packet train and � fl� is the output spacing calculated by the
Eq. �7� fluid approximation. The ��n� value can be consid-
ered as

��n� = �	 = ��n� − � fl�  , �10�

where the 	 values are independent and identically distrib-
uted �iid� random variables that are depend on the �n input
spacing and the statistical properties of the background traf-
fic. Based on the generalized central limit theory, one can
show that

��n� � n
. �11�

If 	 has finite variance then the sum tends toward the normal
distribution and ��n��n−0.5 as n→�. If 	 has infinite vari-
ance then the sum tends to the Pareto distribution with
��n��n
 as n→�, where 
 is related to the shape parameter
of the Pareto distribution. In our case the 
 exponent de-
scribes the arrival process of the background traffic. The ar-
rival process is a fundamental property of the network traffic
that describes whether the traffic flows are independent or
rather correlated in time. Based on the ��n� function we are
able to distinguish between the typical arrival processes and
we can determine also the shape parameter of the Pareto
distribution in the case of. With some algebraic work it can
be shown that


 = 
− 0.5 for Poisson and Weibull arrival processes

1

�
− 1 for Pareto arrival process, �

�12�

where � is the shape parameter of the Pareto distribution.
The Pareto distribution shows heavy-tailed properties in the
case 1���2. Otherwise, if ��2 the observable behavior
is rather Poisson-like, with 
=−0.5.

The power law behavior makes it possible to infer the
background traffic arrival process. As a next step, we can
investigate the exponents of the power law relation between
the average stretch and the train length. Several simulated
scenarios were performed with different kind of background
traffic arrival processes. Besides the arrival process the other
important parameters are set to be the same: C=10 Mbps,
B=6 Mbps, P=12000 bit, and p=12000 bit. We used Pois-
son, Weibull and Pareto arrival processes to model both short
range and heavy-tailed distributions. The shape parameter of
the Pareto distribution was varied in order to study the effect
of the heavy-tailed behavior.

In Figs. 3 and 4 we present the average stretch as a func-
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FIG. 2. �Color online� The order parameter ��� as a function of
probe traffic intensity �p /�n� for different train lengths.
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FIG. 3. �Color online� The deviation of the average output spac-
ing from the fluid limit as a function of the train lengths for Poisson
and Pareto arrival processes. All the 5 data sets are taken at the
critical point ��c=3 ms� of the dispersion curves.
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tion of the probe packet train length for different arrival pro-
cesses. The both axis have logarithmic scale to show the
power law relation between the quantities. In this figure, the
system is studied in the critical point of the phase transition
�c=3 ms, p /�c=4 Mbps. From the slopes of the fitted linear
it can be seen that different exponents belong to different
arrival process. The fitted exponents are summarized in Table
I to compare them with the calculated exponents. The calcu-
lation of the exponents are based on Eq. �12�. The fitted
exponents match to the calculated theoretical values, which
shows that with packet train measurements one can infer the
arrival process of the background traffic in the bottleneck
queue.

VI. EXPLANATION OF THE STRETCH FUNCTION
AT �Å�c

In the previous section, we presented how the arrival pro-
cess of the background traffic can be determined in the criti-
cal point of the phase transition. In this section we provide
the explanation of the observed average stretch for the �
��c and ���c cases. The exact running of the ��n� function
depends on the distance of the actual � and �c value, which
distance is related to the � input spacing, the B background
traffic rate and also the C physical capacity of the network.
In case of ���c the probe traffic exceeds the free capacity of
the network that leads to overloading the server and queuing
in the buffers. In this case, the probe and background traffic
packets are leaving the investigated network as a continuous
flow. If ���c the probe traffic rate is less then the long term
average of the free capacity of the network, but on short term
�in the characteristic length of a probe train� the background
traffic fluctuations can cause temporally overload in the net-
work with high probability. This probability decreases as the
average probe traffic rate is decreased �as the � probe packet
separation is increased�.

The described scenarios are presented in Fig. 5, where we
defined the packet sequence numbers in the probe train in the

order of the leaving of the sender from 1 to n. Four cases can
be recognized: a� the injected packet train with well defined
packet spacing and without background traffic, b� the probe
train with background traffic in the uncongested phase, c� the
packet train at the critical point �described in Sec. V. and d�
the fully loaded line in the congested phase. In the uncon-
gested phase �Fig. 5�b�� there is a kth packet that separates
the probe train into two parts in the following way. The first
part �consisting of k number of packets� called unchanged
subtrain that does not suffer stretch and a second part �built
up by n−k packets� called stretched subtrain with increased
train length due to the background traffic burst entered be-
tween the packets of the second part. The limiting kth packet
can be clearly seen in the center of Fig. 5�b�, while the un-
changed subtrain takes the right part �from 1 to k� and the
stretched subtrain takes the left part �from k to n� of the
schematic probe train.

A. Uncongested phase: ���c

Although in the case of ���c the input spacing region
corresponds to the uncongested phase, the �n� dispersion can
be larger than � fl� . This deviation can be clearly seen in Fig. 1
around �=4 ms. On average the distance between the probe
packets are larger than what the background traffic packets
can fill. This could lead to the false conclusion that the probe
train length is not changing as the train interacts with the
background traffic. This conclusion not holds, since the
background traffic bursts entering between the last few probe
packets increase in the probe train length if the size of the
background traffic burst exceeds the size of the gaps between
the last probe packets. In that case, the free capacity remain-
ing between the lasts probe packets is smaller than the back-
ground traffic rate of a traffic burst. This phenomena can be
recognized in Fig. 5�b�.

To determine the probe train stretch in the uncongested
phase we have to investigate the effect of the background
traffic entering between the last l probe packets of the probe
train. This framework enables the background traffic to enter
between any two probe packets with sequence number larger

TABLE I. Comparison of the fitted and calculated exponents for
different traffic arrival processes. The fitted values match very well
to the calculated ones, which allows us to infer the background
traffic arrival process from these kind of experiments. The data sets
and fitted lines are the same as in Figs. 3 and 4.

Calculated exponent Fitted exponent

Poisson process −0.50 −0.51

Weibull, k=2.0 −0.50 −0.50

Weibull, k=1.0 −0.50 −0.49

Weibull, k=0.5 −0.50 −0.50

Weibull, k=0.25 −0.50 −0.48

Pareto, �=2.1 −0.50 −0.50

Pareto, �=1.7 −0.41 −0.40

Pareto, �=1.5 −0.33 −0.33

Pareto, �=1.3 −0.23 −0.22
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FIG. 4. �Color online� The deviation of the average output spac-
ing from the fluid limit as a function of the train lengths for Weibull
arrival process. All the data sets are taken at the critical point
��c=3 ms� of the dispersion curves.
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than l, thus, the formula describes the situation for l includes
all the situations for sequence numbers that are smaller than
l. In this case the sequence number of the packet that sepa-
rates the unchanged and stretched subtrains is k=n− l. The
formula for the average stretch for general l values can be
written in the following way

��n� = �n� − � fl�

=
1

n − 1�
i=1

n−1

�i� − � fl�

=
1

n − 1
��n − l − 1�� + �l−1� − �n − 1�� fl�

=
1

n − 1��n − l − 1�� + �
j=n−l−1

n−1 � p

C
+

pBj

C
	 − �n − 1���

=
1

n − 1
�S − l��

=
1

n − 1
· K � n−1, �13�

where the output spacing is the sum of n− l−1 times of the
initial spacing � for the first n− l packets and the �l−1� output
spacing that consists the sum of the probe packet spacings
for the last l probe packets �packets from n− l to n�. The
exact value of �l−1� probe packet spacing is not important
right now, but we notice that this is build up by the probe
packet service time p /C and the service time of the jammed
background traffic pBj /C for the last l probe packets. The
sum of these service times is denoted by S that is indepen-
dent from the n packet train length. The sum of �n− l−1� �
and �n−1�� fl� is l� independent from n, since � fl� =� if �
��c from Eq. �7�. The final result is that for large n value the
��n� average stretch scales as n−1.

In Fig. 6, the results from packet level simulations can be

seen. We plotted the ��n� average stretch as the function of
the n probe train length. We investigated this relation using
several kinds of background traffic arrival processes with
different parameters. One can see that the values follow
power law functions with a slope of 
=−1 for all the differ-
ent arrival processes, which confirms the above analytical
result and can be summarized as

���n� � n−1 for � � �c �14�

independent from the kind of arrival process.

B. Congested phase: ���c

Next, the congested phase is investigated, where ���c. In
this case, the probe traffic and the background traffic together
exceed the physical capacity of the link, thus the packets are

FIG. 5. �Color online� Graphical representation of the probe packet train dispersion: a� at departing from the sender; interring with the
background traffic b� in uncongested case; c� in the critical point; d� in congested traffic conditions.
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FIG. 6. �Color online� The deviation of the average output spac-
ing from the fluid limit as a function of the train lengths for differ-
ent arrival processes. The data sets are taken above the critical
point, at �c=4 ms of the dispersion curves.
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leaving the queue in back-to-back manner. This means that
the probe packets and the background traffic packets consti-
tute a continuous flow without any gaps in between. Al-
though the background traffic rate is fluctuating on short time
scale, the traffic bursts can be neglected in our analysis. This
is because even the large traffic bursts are built up by indi-
vidual packets and thus the bursts not served as single traffic
units, but as series of separate packets. In a general and re-
alistic scenario the packet sizes are similar in the background
traffic and the probe traffic. The order of the packets in the
queue is determined by their order of arrival and as the pack-
ets of the probe train are arriving regularly, since their �
spacing is constant, the background traffic packets can only
be injected in between. In the case of congestion this rule
leads to an alternate packet order in the queue where every
probe packet is followed by constant number of background
traffic packets and vice versa. This phenomena can be seen
in Fig. 5�d�. This property eliminates the effect of high fluc-
tuations of the background traffic and the background traffic
jammed between the probe packets can be treated as a con-
stant traffic amount. In this case, the average stretch then will
be calculated from the total length of the probe train, in the
following way

��n� = �n� − � fl�

=
1

n − 1�
i=1

n−1

�i� − � fl�

=
1

n − 1�
j=1

n−1 � p

C
+

pBj

C
	 −

p

C
− �

B

C

=
1

n − 1�
j=1

n−1
pBj

C
− �

B

C

=
1

n − 1

�n − 1� · pB

C
− �

B

C

=
pB

C
− �

B

C
� K � n0, �15�

where � fl� is substituted from Eq. �7� and we can approximate
pBj= pB due to the previously described property of the con-
gested traffic. Finally, we can see that the average stretch in
independent from the n probe train length.

In Fig. 7, the results from packet level simulations can be
seen. We plotted the ��n� average stretch as the function of
the n probe train length. We investigated this relation by
using several kinds of background traffic arrival processes
with different parameters. One can see that the ��n� values
are independent of the actual choice of n probe train length
for all the different arrival processes, which confirms the
above results.

For the regions of � input spacing values the ��n� average
stretch can be written

��n� � 
 n0 � � �c

n
 � = �c

n−1 � � �c
� , �16�

where the appropriate values for 
 is described by Eq. �12�
formula. One can see that the 
 parameter of the background
traffic arrival process plays an important role only in the
critical point of the phase transition and its value can be
estimated by the slope of the ��n� function.

VII. CONCLUSION

Based on the packet-train measurement technique, we
presented an approach to infer internal properties of the In-
ternet traffic. We presented the packet train stretch as an
order parameter, which describes the phase transition be-
tween the congested and uncongested phases of the bottle-
neck link. We studied the scaling phenomena at the critical
point and we found that the exponent of the power law func-
tion arising in the average stretch function is closely related
to the background traffic arrival process. We showed that the
observed exponents can be calculated and the theoretical re-
sults match very well to the observed power law functions. It
makes us possible to infer the qualitative and some of the
quantitative parameters of the background traffic arrival pro-
cess with end-to-end packet train technique.

As a future work we are planning to infer the traffic ar-
rival process in wide geographic area in Europe with the
ETOMIC infrastructure �31�. With this measurement infra-
structure we will be able to collect large number of estimates
frequently, which will helps us in the study of the spatiotem-
poral structure of the background traffic arrival processes.
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FIG. 7. �Color online� The deviation of the average output spac-
ing from the fluid limit as a function of the train lengths for differ-
ent arrival processes. The data sets are taken below the critical
point, at �=1.5 ms of the dispersion curves.
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